

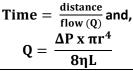
Intravenous Anaesthetic Drugs & Antagonists

Pharm-08A3 Describe the ideal pharmacokinetic and pharmacodynamic properties of agents used for sedation. Outline the pharmacology of midazolam and propofol with reference to these ideal properties.

Ideal Sedative Agent	Propofol	Midazolam
Pharmacokinetic		
Rapid onset:	Yes	10 Minutes, not as rapid
Largely unionised (pKa)	Acid pKa 11, 90% unionised at pH	Base pKa 6.2, 89% unionized
Lipophilic	7.4	at pH 7.4
	highly	Moderate
Small Vd	Large 8L/kg	1.5L/kg
Low degree protein binding	98% protein bound	98% protein bound
Rapid offset (less hangover)	Yes, T _{1/2} = 1-2 min	No, slow washout, $T_{1/2} = 2-4$
		hours
Inactivated by metabolism not	Metabolised liver + extrahepatic	Metabolised liver (oxidation)
redistribution	clearance	CL = 6-8mL/kg/min
High clearance	CL = 30mL/kg/min	Active metabolites
Nil active metabolites	None	Renal
Organ independent extraction	Renal excretion unchanged <1%	
Pharmacodynamic		
Predictable dose-effect:		
Sedation, anxiolysis	Sedation, nil anxiolysis	Sedation, anxiolysis
Amnesia	Amnesic	Profound amnesia
Analgesia	Nil analgesia	Nil analgesia
Minimal general anaesthesia	Dose-dependent \downarrow LOC \rightarrow high	Ceiling effect, does not
(hypnosis, unconsciousness)	doses used general anaesthesia	produce general anaesthesia
Known mechanism of action	Potentiates GABAA $\rightarrow \uparrow$ duration Cl	Facilitates GABA binding to
	channel	GABAA → ↑ frequency Cl
		channel
Antagonist	None	Flumazenil
Minimal Side effects:		Tolerance / dependence
Cerebral	Anti-epileptic	Anti-epileptic, ischaemic
CV		preconditioning
	Significant \downarrow CO 25%, \downarrow SV/SVR, \downarrow	Mild ↓MAP, ↑ HR, nil
	baroreceptor reflex	change CO
Resp	Significant ↓ MV, ↑RR, ↓TV, ↓	Dose dependent mild \downarrow MV,
	response CO ₂ , \downarrow reflexes	↑TV, ↓RR
N+V	Anti-emetic	Anti-emetic
Local	30-80% pain	Nil
Arterial	None	Nil
Hypersensitivity	Egg hypersensitivity	Rare
Pregnancy		
No contraindications	Shock	
Conclusion – midazolam is a safer agen	t for sedation as it has less propensity	to cause anaesthesia, hypnosis
and less cardiorespiratory depression.		
required midazolam is often combined	-	

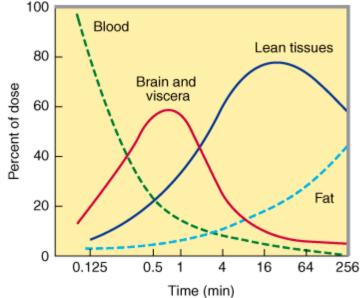
required, midazolam is often combined with low dose propofol.

Pharm-97B9/94 List the properties of an ideal intravenous anaesthetic. To what extent does methohexitone/propofol conform to this ideal?


Ideal Anaesthetic Agent	Methohexitone	Propofol
Physiochemical	0.5g anhydrous white powder in	1% solution, 10% soybean oil,
	30mg NaCO3, 1% solution, water.	2,25% glycerol, 1.2% purified
	pH 11.	egg phosphate
Cheap		No
Water soluble	Yes	No
Long shelf life	Stored powder, 6 week life	Needs storage 2-25 degrees
Sterile	At pH 11 (NaCO3) bacteriostatic	After 6 hours open, can grow
	· · · · · · · · · · · · · · · · · · ·	fungus
Compatible with other drugs	Yes	Incompatible with atracurium
	Does interact with sulphonamides,	
	contrast media through protein	
	binding.	
Pharmacokinetic	······································	
Rapid onset:	Yes, 30 sec	Yes, 30 sec
Largely unionised (high pKa)	pKa 7.9, 75% unionised at pH 7.4	pKa 11, 90% ionised at pH 7.4
Lipophilic	Yes	Yes
Small Vd	2L/kg	4L/kg
Low degree protein binding	60%	98% protein bound
Rapid offset:	Yes	Yes:
Inactivated by metabolism not	Metabolised liver CYP 450, HER 0.5,	Metabolised liver
redistribution	saturable	
High clearance	CL = 11mL/kg/min	CL = 30mL/kg/min > HBF
Nil active metabolites	No active metabolised	No active metabolites
Organ independent extraction	Kidney excretion	Kidney excretion
	$T_{1/2}$ = 6min, 4 hours	T _{1/2} = 1-2min, 4-24 hours
Pharmacodynamic		
Predictable dose-effect	Dose dependent LOC 30 sec	Dose dependent LOC 30 sec
	1-2mg/kg	1.5-2.5mg/kg
Known mechanism of action	Potentiates GABA binding at GABAA	Potentiates GABA binding at
	(个 duration)	GABA _A (个 duration)
Antagonist	No	No
Minimal Side effects:	Excitatory phenomenon – muscle	
	twitch, cough, seizures 33%	
Cerebral	?epileptogenic	Preserves cerebral
		autoregulation, anticonvulsant
		Significant depression, \downarrow SV,
CV depression	Mild depressant, \downarrow SV, \uparrow HR	\downarrow MAP, inhibits baroreceptor
-		reflex, \downarrow CO 25%
		Significant depressant, ↑ RR,
Resp depression	Mild depressant, \downarrow RR, \uparrow TV	TV, inhibits response to CO ₂ ,
· ·		depresses reflexes
		Antiemetic
N+V	Yes	Pain 30-80%
Venous pain	Pain 80%, minimal IA complications	None
Arterial complications	compared to thio	Egg allergy
Hypersensitivity	Yes, but low severity	
Pregnancy		
No contraindications	Contraindicated porphyria	None
	popular drug used for IV anaesthesia, due	

properties and predictable therapeutic anaesthetic effects.

Pharm-10A4 Describe the time course between an intravenous injection of a general anaesthetic agent to loss of consciousness. Explain the delay using pharmacokinetic principles.


- The loss of consciousness produced by an anaesthetic agent is dose dependent (clinically), and pharmacokinetically, requires that an adequate concentration of drug reach its site of action (the CNS). The time course depends on factors influencing the time to reach therapeutic concentrations in the CNS which consists of the following processes:
 - a. Rate of flow of drug from vascular compartment to BBB
 - b. Rate of diffusion across BBB \rightarrow CNS
 - c. Rate of redistribution outside the vascular compartment
 - d. Rate of metabolism
- 2. Rate of flow from the vascular compartment to BBB

- a. Distance from CNS injecting the drug in a vein closer to the brain will induce quicker effect (central line quicker than IVC in hand)
- b. Radius of vessel larger vessel flow is quicker than smaller vessel
- c. Cardiac output lower cardiac output states will \uparrow time taken to reach BBB
- 3. Rate of diffusion across BBB \rightarrow CNS. The BBB is a tight junction formed by astrocyte membrane (lipid bilayer)

	Sol x A x ΔP
	Diffusion = $\frac{\sqrt{MW}xT}{\sqrt{MW}xT}$
	VIVIVXI
a.	Concentration gradient – bolus doses which are pushed in faster will reach the BBB at
	higher concentrations and create a stronger gradient for more rapid diffusion

- b. Solubility lipid soluble drugs will cross more easily (hence given in circulation in unionized form)
- c. MW smaller drugs will cross more quickly
- 4. Rate of redistribution IV anaesthetics redistribute as soon as they are injected. They redistribute into skeletal muscle and fat (3 compartment model) which slows their ability to reach the BBB.
 - a. Volume distribution low VD drugs have less tendency to redistribute and hence act more quickly. It depends on:
 - i. Protein binding highly protein bound drugs are held in the circulation
 - ii. Lipid solubility paradoxically, low lipid solubility confers low VD (can't cross lipid bilayers) and hence speeds distribution to CNS.
- Rate of metabolism IV anaesthetics in the circulation are also metabolised in the liver. Rate of metabolism will slow the amount of active drug that reaches the CNS.

Eg. Thiopentone (diagram)

Pharm-05A3 What factors may explain the inter-individual variability in drug response seen with intravenous anaesthetic induction agents?

- 1. The response to IV anaesthetic induction agents is clinically important when observed in terms of amount of dose (potency), speed of induction, and recovery. There is considerable pharmacokinetic and Pharmacodynamic variability.
- 2. Pharmacokinetic: the concentration of the drug administered which reaches the site of action (CNS) is the main pharmacokinetic factor.
 - a. Distribution drugs which distribute rapidly and completely from the blood into the CNS compartment show greater activity.
 - i. Protein binding transports drugs in their inactive state. ↑ protein (pregnancy)
 → ↓ active drug available for action. ↓ protein (nephritic syndrome, hypoalbuminaemia) → ↑ active drug available → ↑ response
 - ii. Intravascular volume \downarrow volume (shock, dehydration) $\rightarrow \uparrow$ concentration of drug $\rightarrow \uparrow$ response.
 - iii. Barrier permeability inflammation of meninges \rightarrow \uparrow permeability \rightarrow \uparrow response to CNS drugs
 - iv. Cardiac output low cardiac output states will slow the delivery of the drug from the vascular compartment to the CNS (\uparrow arm-brain circulation time).
 - b. Redistribution of drugs into the muscle and fat compartments slows this.
 - i. \uparrow fat (obesity, older age) \rightarrow \uparrow distribution of drugs into fat \rightarrow \downarrow onset time / slower washout.
 - ii. \downarrow CO \rightarrow more time to redistribute \rightarrow slower offset
 - c. Metabolism drugs held in the vascular compartment are distributed to organs of metabolism (mainly liver), which usually inactivates them and \downarrow response:
 - i. Liver failure, \downarrow hepatic BF $\rightarrow \downarrow$ metabolism $\rightarrow \uparrow$ response
 - ii. CYP 450 enzyme induction (phenytoin) $\rightarrow \downarrow$ response, inhibition (antibiotics) $\rightarrow \uparrow$ response
 - d. Excretion some drugs may have active metabolites which need to be excreted by the kidney (thiopentone, methohexitone).
 - i. Renal failure $\rightarrow \downarrow$ excretion $\rightarrow \uparrow$ effect
- 3. Pharmacodynamic:
 - a. Receptor sensitivity:
 - i. Tolerance previous repeated exposure to CNS depressants will down-regulate GABA receptors $\rightarrow \uparrow$ dose required for effect
 - b. Drug interactions:
 - i. CNS depressants generally have synergistic effect of anaesthesia $\rightarrow \downarrow$ dose induction agents required when combining with opioids
 - ii. Protein displacement of induction drugs by other drugs will tend to \uparrow effect
 - c. Organ system sensitivity to adverse effects:
 - i. Cardiovascular depression more common in individuals with high cardiac risk (elderly, MI)
 - d. Idiosyncratic reactions:
 - i. Hypersensitivity reactions e.g. egg allergy to propofol
- 4. In general:

- a. Age extremes of age require lower dosing
- b. Body habitus larger individuals need larger doses

Pharm-08B2/93 Describe the pharmacokinetic principles of total intravenous anaesthesia using propofol.

1. TIVA – total intravenous anaesthesia is the method of inducing and maintaining general anaesthesia via a continuous infusion of IV anaesthetic (usually propofol) without the use of an inhaled volatile anaesthetic agent.

The aim of TIVA is to reach and maintain a central compartment concentration of propofol at a level adequate for anaesthesia. $Cp_{50} = 4cmg/mL$. TIVA is achieved by careful administration of doses at different stages of induction and maintenance.

- 2. Induction LD = 1.5-2.5mg/kg
 - Because propofol has a large VD (8L/kg) a loading dose must be given to fill the central compartment so that propofol reaches its desired concentration.
 LD = plasma conc x VD
- 3. Distribution shortly after induction, propofol concentration drops due to:
 - a. distribution into the peripheral compartments (muscle, and fat)
 - metabolism in the liver (and probably other organs)
 Thus an infusion rate of propofol must be given to account for this (4-12mL/kg/hour).
- 4. Saturation of compartments as infusion continues, the peripheral compartments become saturated, and distribution becomes less important. Instead, elimination becomes the main mechanism for reducing plasma concentrations. The infusion rate is slowed to approach the rate of elimination (steady state) = 30mL/kg/min.
- 5. Offset of action once the infusion is stopped, the plasma concentration of propofol depends on the rate of elimination from the central compartment. This is measured by the context-sensitive half-life.
 - a. Short infusions propofol has not completed distribution and the $T_{1/2}$ will depend on the time taken for redistribution. $T_{1/2}\,\alpha$
 - b. Long infusions propofol has completed distribution and saturated into compartments and the $T_{1/2}$ will depend on the time taken for clearance (metabolism and excretion). $T_{1/2}\beta$.
- 6. TIVA is theatres in now controlled by computer controlled infusion devices. They use mathematical algorithms based on multicompartment model kinetics to provide controlled infusion rates to match a desired plasma concentration. They are corrected for values such as age, weight.

Pharm-10B6/03B4 Describe the principles of how a computer-controlled infusion device targets and maintains a constant effect site concentration of propofol.

- Computer controlled devices use mathematical algorithms based on multi-compartment pharmacokinetics for propofol, to provide a constant specific plasma concentration, for its use in total intravenous anaesthesia. This is because IV anaesthetics (unlike inhalational) do not have a direct point of effect monitoring (e.g. end tidal measurement). There are 2 main algorithms used:
 - a. Marsh based on weight alone
 - b. Schneider based on age and weight

The operator inputs the patient age and weight, and then chooses a particular target concentration. For propofol, this is usually 3-4mcg/mL (1-8mcg/mL depending on clinical situation). In clinical practise, the device is called a Diprofuser and consists of a computer chip device, controlling a syringe driver.

- 2. The computer rate is useful as it calculates the different rates required for the induction, and stages of maintenance of propofol:
 - a. Induction as propofol has a large VD, a loading (bolus) dose is given, calculated by: LD = VD x desired plasma conc
 - b. Initial maintenance as the infusion commences, propofol is rapidly redistributed to the skeletal muscle and the fat compartments. The computer maintains a high infusion rate to account for this loss of drug into other compartments.
 - c. Ongoing maintenance as the infusion continues, the muscle and fat compartments become saturated with propofol. Redistribution slows, and elimination of propofol via metabolism and excretion becomes most important factor \downarrow plasma concentration. The computer adjusts infusion rate when this occurs.

Maintenance dose = elimination rate = plasma concentration x Clearance

- 3. Adjusting target plasma concentrations the clinical situation may require ↑ doses (↑ surgical stimulus) or ↓ doses (patient response). The anaesthetist can input the new target concentration and:
 - a. \uparrow dose bolus dose given and infusion continues at a calculated higher rate
 - b. \downarrow dose infusion ceases for a calculated time, and recommences at a lower rate.
- 4. Advantages:
 - a. Maintains plasma concentrations within 30-60sec, without overshoot of loading doses \rightarrow more consistent level of anaesthesia
 - b. Shown to \downarrow overall propofol required
- 5. Disadvantages:
 - a. Based on small population study sample of healthy individuals
 - b. Does not take into account individual variability, co-morbidities. Anaesthetist must adjust rates for co-morbidities, adjuvant drugs and degree of surgical stimulation.

Pharm04-B7 Outline the factors which influence the elimination half life of propofol.

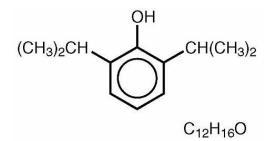
1. Half-life: the time taken for 50% of drug to be completely removed from the plasma during the elimination phase $(T_{1/2\beta})$.

$\Gamma_{1/2\beta} = \frac{\Gamma_{1/2\beta}}{\Gamma_{1/2\beta}}$

Usually = 4 hours for propofol.

The factors which influence it can be divided into volume of distribution and clearance factors. Draw diagram of body compartments

2. Volume of distribution: the theoretical volume of fluid required to hold propofol at its plasma concentration after the drug has reached steady state. It measures the extent to which it distributes to other body compartments (CNS, fat, skeletal muscle). High VD tends to $\uparrow T_{1/2\beta}$.


VD = 4-5L/kg (some say 2-10L/kg), which is large.

- a. Protein binding tends to hold the drug in the circulation and reduce VD. Although propofol is 98% protein bound, which tends to \sqrt{VD} .
 - i. $\,\,\,\downarrow\,\,$ protein states (elderly, pregnancy, liver failure, nephrotic syndrome) $\,\,
 ightarrow\,$ VD
- b. Plasma volume \downarrow volumes (shock, hypovolaemia) $\rightarrow \downarrow$ VD
- c. Lipid solubility propofol is a small, mostly unionised drug at blood pH (acid, pKa 11) and its hence very able to cross lipid bilayers to enter other compartments.
 - i. \uparrow fat (obesity, older age) \rightarrow \uparrow VD
- 3. Clearance: the rate of removal of propofol from the plasma compartment. The clearance of propofol occurs mostly through hepatic metabolism. Its hepatic extraction ratio is > 1.0 (high), and hence its clearance is flow limited (dependent on hepatic blood flow, rather than enzyme saturation). Since its CL > HBF, it is thought to be metabolised in other organs (possibly lungs). Usual value 30mL/kg/min.
 - a. \downarrow hepatic blood flow (\downarrow clearance $\rightarrow \uparrow T_{1/2\beta}$)
 - i. Age
 - ii. Liver disease / cirrhosis
 - iii. Drugs (propanolol, octreotide)
 - iv. Disease states shock
 - v. Hypothermia
 - b. \uparrow hepatic blood flow
 - i. Pregnancy
 - c. Renal disease 0.3% excreted unchanged in kidney, thus renal failure is a very small factor and will slightly \uparrow $T_{1/2\beta}.$
- 4. Summary:
 - a. $\uparrow T_{1/2\beta}$: Older age, Liver disease, Hypothermia, Drugs (propanolol, octreotide)
 - b. $\downarrow T_{1/2\beta}$: Young age
 - c. Individual variability is high

Pharm-09B2/01A13/98A10 What are the potential side effects of propofol and its formulations?

- 1. Propofol is an isopropyl derivative intravenous induction and maintenance anaesthetic. It is used for:
 - a. Induction of anaesthesia
 - b. Maintenance of anaesthesia as a sole agent or in combination with GA
 - c. Procedural sedation

These therapeutic uses must be considered when assessed its non ideal features.

It is stored in suspension: 1 or 2%, 10% soybean oil, 2.25% glycerol isotonic, 1.2% egg phosphatide. It is an acid with pKa 11, stored at pH 6.5-8.5.

- 2. Pharmaceutical:
 - a. Expensive
 - b. Necessary storage in glass
 - c. Not water soluble
 - d. No preservatives, supports bacterial/fungal growth \rightarrow limited shelf-life once opened (6 hours)
 - e. Not compatible with atracurium
- 3. Pharmacokinetic:
 - a. Distribution:
 - i. High protein binding easily displaced by drugs, low protein states
 - ii. High VD significant redistribution in other compartments other than site of action which complicates PK calculations
 - iii. Crosses placental barrier (highly lipid soluble, small molecule)
 - b. Clearance:
 - i. Dependent on liver function and blood flow (depression in liver disease)
- 4. Pharmacodynamic:
 - a. Effects:
 - i. Dose response has individual variability and not always predictable \rightarrow narrow therapeutic window between sedation \rightarrow anaesthesia
 - ii. No analgesic effect and must be used in combination with analgesic
 - b. Mechanism of action not clear
 - c. No antidote
 - d. CNS:
 - i. \downarrow CBF (v/c) $\rightarrow \downarrow$ ICP (less than $\downarrow \downarrow$ MAP) $\rightarrow \downarrow$ CPP \rightarrow ischaemia risk
 - ii. \downarrow EEG activity, can cause myoclonic jerks
 - iii. excitatory movements with induction, vivid dreams
 - iv. subclinical doses \rightarrow euphoria \rightarrow abuse potential
 - e. CVS:
 - i. \downarrow contractility, \downarrow SVR (vasodilation due to NO) $\rightarrow \downarrow$ MAP
 - ii. Suppresses baroreceptor reflex $\rightarrow \downarrow$ CO
 - iii. 1:400000 can cause significant bradycardia, asystolic response
 - f. Resp:
 - i. ↓TV → ↓MV
 - ii. \downarrow hypercapnoeic, hypoxic response

- iii. Suppress reflexes \rightarrow aspiration
- g. Metabolic:
 - i. Lipid containing solution \rightarrow lipidaemia in prolonged infusion
 - ii. Produces green coloured hair and sputum
 - iii. ?propofol infusion syndrome
- h. Local: 20-80% report significant pain on injection
- i. Allergy: uncommon allergy to soybean and egg phosphatide.

Pharm-06A4 Describe the pharmacodynamic properties of propofol and how this influences its clinical usage.

1. Propofol (2,6 isopropylphenol) is an IV anaesthetic used for the induction and maintenance of general anaesthesia, or for sedation. Its mechanism of action is unclear, although it is thought potentiate the action of GABA at the GABA_A receptor $\rightarrow \uparrow$ Cl conductance \rightarrow cell hyperpolarisation.

Pharmacodynamic property	Clinical Usage	
CNS		
Dose-dependent sedation/anxiolysis $ ightarrow$ anaesthesia	Used for sedation for minor procedures	
	Used for induction and maintenance of general	
	anaesthesia	
Rapid onset LOC	Useful for RSI, ED procedures	
Rapid emergence	Useful for day procedures	
Cerebral v/c \rightarrow \downarrow CBF \rightarrow \downarrow ICP	Used in situations of raised ICP (SOL, ICH,	
	neurosurgery)	
\downarrow CPP (MAP \downarrow more)	Caution in \downarrow cerebral perfusion (ischaemic stroke)	
Suppresses EEG	Can be used in status epilepticus	
	Causes myoclonic jerk	
CVS		
Potentiates NO \rightarrow vasodilation $\rightarrow \downarrow$ SVR $\rightarrow \downarrow$ MAP	Monitoring requires – ECG, blood pressure, pulse	
Depresses contractility, baroreceptor reflex $\rightarrow \downarrow$ HR rate.		
$\rightarrow \downarrow$ CO	IV fluids and IV resuscitation required.	
Decreases myocardial O ₂ consumption	Dangerous, relative CI in shock	
	Can be beneficial in heart failure	
Respiratory		
↓TV, may 个RR → overall ↓MV	Monitoring required – sats	
\downarrow response to \downarrow pO ₂ , \uparrow pCO ₂	Need airway resuscitation ready	
↓ airway reflexes	Useful in airway procedure (laryngeal mask, RSI)	
	↑ risk aspiration	
GI – antiemetic	Useful in patients at risk for PONV	
Metabolic –	Soybean, glycerol, egg phosphatide	
Formulation contains high caloric count		
Local – causes pain on injection in 20-80%	Administer in larger veins +/- lignocaine	
Hypersensitivity to egg, soybean	Avoid in people with this	
Does not rigger MH	Useful in high risk patients with sux	
Eye - ↓IOP	Useful in ophthalmic surgery	
Toxicity	↑ risk in long infusions at high dose	
 propofol infusion syndrome: rhabdomyolysis, 		
metabolic acidosis, renal failure		

Pharm-07A4 Discuss the suitability of ketamine as a total intravenous anaesthetic agent in comparison with propofol.

Properties (Ideal)	Propofol	Ketamine
Physiochemical		
Cheap	Expensive, required glass storage.	Yes, used commonly in 3 rd world medicine for TIVA
Long shelf-life	Limited due to lipid emulsion	Yes
Low risk bacterial contamination	Risk of contamination > 6 weeks	Low risk
Water soluble	No	Yes, can be used IM
Structure	(CH ₃) ₂ CH CH(CH ₃) ₂ CH C ₁₂ H ₁₆ O	CH ₃ I CI
Pharmacokinetics	Predictable Computerised infusion devices available	Less predictable No computer infusion devices available
Rapid Onset	Yes – 30sec	Yes
Minimal distribution into	Little accumulation	More accumulation with longer
peripheral compartment	Short CSHL	infusions \rightarrow longer washout
Complete metabolism	Complete liver metabolism + extra	
independent of organ function	hepatic metabolism	
	CL = 30mL/kg/min	
Inactive metabolites	Yes	
Short half-lives		Longer duration action so can be used more easily with repeated bolus.
Pharmacodynamics		
Predictable general anaesthesia	Yes, dose dependent	
CNS: other favourable effects Analgesia Sedation Anxiolysis	Sedation. No analgesia / anxiolysis.	Very good dissociative analgesia. No anxiolysis
CNS: does not 个CBF / ICP	↓ICP (favourable)	↑ ICP
CVS: minimal depression	Significant cardiac depression - ↓SVR, MAP, no change HR. Can cause 1:4000 bradycardia → asystole	Myocardial depressant but initiates SNS reflex responses → ↑HR, ↑ CO, ↑ MAP Can be arrhythmogenic
Resp: minimal depression	Resp depression - \uparrow RR, \downarrow TV Loss airway reflexes	Stimulates resp Maintains reflexes
No PONV	Anti-emetic	High rate PONV
Other adverse effects	Crosses placental barrier	High rate emergence phenomenon
Local Effects	Painful injection 20-80%	
Hypersensitivity	Egg allergy	Low
Summary	Used more commonly as TIVA in controlled environments because of favourable emergency and pharmacokinetic profiles.	Commonly used in 3 rd world environments in less-skilled hands. Favourable in situations of cardio/resp failure. Less requirement for supplementary drugs

Pharm-00B14/98B9 Write short notes contrasting the cardiovascular effects of propofol and ketamine seen clinically.

Effect	Propofol	Ketamine
Clinical Use	Procedural sedation	Procedural sedation
	IV induction/maintenance	Analgesia
	anaesthesia	
Mechanism of action	Potentiates GABA _A receptor	Antagonises NMDA receptor
Cardiac effects – the general	clinical result of propofol is that it is a ca	ardiac depressant. It effects are dose
	nonitoring, IV fluids and preparation of r	
	le and cerebrovascular effects mean tha	t it is used more often in neurosurgical
situations.		
	aining cardiovascular function and is use	
		and so, in relatively risk-free individuals,
propofol is preferred for cont		
SVR	\downarrow (NO production)	Nil effect
Stroke volume	\downarrow (negative inotrope)	Complex –
		At low doses \uparrow SV due to SNS
		activation
		At high doses \downarrow SV due to intrinsic
		cardiac depression
		In situ, ketamine alone produces \downarrow SV
MAP	\downarrow 10-20% (dose dependent, due to	SBP raised 20-40mmHg, diastolic less,
	↓SV/SVR)	↑Pulse pressure. Rises over 3-5min,
		then falls back to normal.
		Blunted by benzos / inhaled
		anaesthetics.
Sympathetic nervous	\downarrow (inhibits SNS, blunts baroreceptor	Direct SNS stimulation \rightarrow sensitised
system effect	reflex response)	SNS response
HR	Normal or \downarrow	个 30% (SNS response, not
		baroreceptor)
СО	\downarrow 10-20% (due to \downarrow SV/HR)	个 (个SR/个HR)
Myocardial O ₂ consumption	\downarrow (\downarrow SV, afterload)	个 (个SV, HR)
Arrhythmia	1:4000 bradycardia → asystole	Slight 个 tendency (个SNS)
PVR	\downarrow (NO production)	Small 个
Cerebrovascular effects -		
Cerebral BF	\downarrow CBF \rightarrow \downarrow ICP	↑CBF → ↑ICP
Cerebral PP	$\downarrow \downarrow MAP>CBF \rightarrow \downarrow CPP$	↑СРР
Renal BF	↓ (↓MAP)	\downarrow (SNS beta ₁ constriction)

Pharm-08B4 Briefly outline the pharmacology of ketamine with references to its use as an analgesic agent in the post-operative period.

1. Ketamine is a dissociated anaesthetic agent which is used in the induction of general anaesthesia, as a sole anaesthetic agent, or post-operative analgesia and for pain relief in chronic pain.

Property	Ketamine
Physiochemical	
Group	Phencyclidine derivative
Structure	CI CH3
Isomers	Racemic mixture R and S enantiomers S-ketamine: greater analgesia
Formulation	Water soluble solution 10/50/100mg/mL Long shelf-life Suitable storage Cheap
Use	Induction anaesthesia TIVA Analgesia (opioid sparing) Procedural sedation
Pharmacodynam	nic
Mechanism	Non-competitive antagonist at NMDA receptor Ca ²⁺ channel Opioid, muscurinic receptor modulation
Dose	IV 1-2mg/kg bolus, 4-12mg/hour infusion IM 10mg/kg
Onset	IV 30 sec IM 5-10min
Duration	Relatively rapid offset after prolonged infusion due to high HER metabolism Rapid offset after bolus due to redistribution
CNS	Dissociative anaesthesia – breaks thalamolimbic connection Emergence – dysphoria, nightmares, hallucinations (treated with benzodiazepines) EEG: dominant θ activity, loss α rhythm \uparrow CBF $\rightarrow \uparrow$ CPP $\rightarrow \uparrow$ ICP \uparrow IOP
CVS	Inotropy: intrinsic negative inotropy in-vitro and high doses Direct stimulation SNS: over-rides $\rightarrow \uparrow$ HR, SV, contractility $\rightarrow \uparrow$ CO SVR \uparrow mild \uparrow CMRO ₂ , \uparrow arrhythmia (mild)
Resp	↑RR → ↑MV Bronchodilation ↑ respiratory secretions Preserved reflexes Nil effect on pCO ₂ /O ₂ response
Other	 ↓ Renal BF ↑ uterine tone
Toxicity	Emergence (个 extremes of age) 个 PONV compared to propofol, thiopentone

	No local injection complications
	Abuse potential
	Allergic rash 15%
Interactions	
Pharmacokineti	CS
Absorption	F = 20%
	Well absorbed IM
Distribution	VD 3L/kg
	High lipid solubility
	25% protein bound
	$T_{1/2\alpha} = 11 \text{ min}$
Metabolism	Hepatic: N-methylation, hydroxylation \rightarrow norketamine (30% potency)
Excretion	Renal
	$T_{1/2\beta} = 2.5$ hours

Pharm-03A2/99A13 Outline the neuropharmacology of thiopentone, covering only its site of action, EEG changes, effects on cerebral blood flow and intracranial pressure.

- 1. Thiopentone: is a barbiturate (5-ethyl 5,1methyl butyl , 2 thiobarbituate) used in the IV induction of anaesthetic.
- 2. Site of action: main site of therapeutic action is in the CNS.
 - a. GABA_A receptor:
 - i. Ligand gated Cl ion channel
 - ii. 5 unit receptor 2α , 2β , γ with central pore
 - iii. Thiopentone binds to β subunit and facilitates the binding of GABA to its receptor site on the α -subunit. It \downarrow dissociation and \uparrow duration of GABA-mediated channel activation
 - iv. At higher doses, thiopentone directly activates channels in the absence of GABA
 - v. Overall effect $\rightarrow \uparrow$ duration of channel opening $\rightarrow \uparrow$ chloride ion conductance \rightarrow cell hyperpolarisation \rightarrow CNS inhibition
 - vi. The β subunit also contains binding sites for benzodiazepines and picrotoxin
- 3. EEG changes
 - a. Dose-dependent suppression of EEG activity
 - b. Awake (α 8-10Hz \rightarrow θ 4-6Hz \rightarrow δ 1-2Hz) \rightarrow burst suppression \rightarrow isoelectric (silent) EEG
- 4. Cerebral blood flow:
 - a. Thiopentone \downarrow neuronal O_2 consumption $\rightarrow \downarrow$ cerebral metabolism of $O_2 \rightarrow \downarrow$ metabolic demand $\rightarrow \downarrow$ cerebral blood flow $\rightarrow \downarrow$ cerebral blood volume
- 5. Intracranial pressure:
 - a. \downarrow cerebral blood volume $\rightarrow \downarrow$ ICP due to the Munro Kellie doctrine (the cranial vault is of fixed volume, so \downarrow cerebral blood volume $\rightarrow \downarrow$ ICP)
 - b. Cerebral perfusion pressure maintained as long as \downarrow MAP < \downarrow CBF

Pharm-02A11/99A14/95A9 Briefly outline the effects of thiopentone and ketamine not mediated via the central nervous system. Include a brief account of the mechanisms by which these side effects are exerted.

Effect	Ketamine	Thiopentone	Propofol
Cardiovascular – Keta	mine's cardiovascular effect	s are complex and partly media	ted by its stimulation of the
SNS (a CNS effect). In-	vitro, it actually depresses c	ontractility, but its overall effect	t is to ↑ myocardial O₂
•		ropofol are primarily related to t	heir ability to stimulate NO
production and produ	ce vessel dilatation.	1	T
Contractility / SV	\downarrow in-vivo	\downarrow (direct depressant)	\downarrow (direct depressant)
SVR	No change	\downarrow	\downarrow
HR	个 (via SNS)	\downarrow (direct)	Nil change or \downarrow
			(suppresses SNS)
СО	个 (via SNS)	\downarrow	\downarrow
MAP	个 (via SNS)	\downarrow	\downarrow
CMO ₂	个 (via SNS)	\downarrow	\downarrow
Arrhythmias	个(via SNS)	\downarrow	\downarrow
Respiratory		-	
MV	\uparrow	\downarrow	\downarrow
Response to $\downarrow pO_2$	Preserved reflexes	Impaired	Impaired
Airway reflexes	Preserved	Preserved	Impaired
Bronchial tone	Dilatation	Constriction	Dilatation
Secretions	Increased	Nil change	Nil
Neurological			-
CMO ₂	\uparrow	\downarrow	\downarrow
CBF	\uparrow	\downarrow	\downarrow
ICP	\uparrow	\downarrow	\downarrow
Local		•	·
Pain injection	Yes, esp IM	No	Yes 20-80% pain
Intra-arterial	Nil effect	Pain / thrombosis / necrosis	Nil effect
Metabolic	Nil effect	Nil effect	Metabolic load (egg
			phosphatate, soya bean)
Gastrointestinal		•	
N+V	Yes	Yes	Anti-emetic
Motility	Decreased	Decreased	Unchanged
Renal	↓RBF (SNS),	↓ RBF, GFR, UO	↓ RBF, GFR, UO
	unchanged GFR	↑ ADH release	. ,
	(autoregulation)		
Endocrine	↑ circulating catechol	↓ K+ transient	
Immune	Rare	1:20000 anaphylaxis	Egg allergy
Uterine tone	Increased	No change	No change
Other		Acute porphyria – induction	
		D-aminovaulinic synthetase	

1992/91 Write short notes on Methohexitone

1. Methohexitone is an oxybarbituate intravenous anaesthetic used for the induction and maintenance of anaesthesia.

Property	Methohexitone	
Pharmaceutical		
Group	Oxybarbituate	
Structure	$HN_1 \xrightarrow{2}_{3}NH$ O $B^1 B^2$	
Preparation	1% white powder 30mg Na ₂ CO ₃ Dissolved in water 1%	
рКа	Base 7.9, 75% unionised at pH 7.4	
Shelf-life	6 weeks	
Pharmacokinetic		
Absorption	Can also be given IM and PR to good effect	
Distribution	Highly lipid soluble VD = 2L/kg Protein binding 60% Offset by redistribution	
Metabolism	Liver – high HER, but saturable Inactive metabolites	
Excretion	Renal excretion < 1% unchanged CL = 11mg/kg/min $T_{1/2\alpha} = 5 min, T_{1/2\beta} = 4 hours$	
Pharmacodynamic		
Mechanism	Binds to barbiturate receptor site on β -subunit of the GABA _A receptor. Slows dissociation of GABA from its site of action $\rightarrow \uparrow$ duration of Cl opening \rightarrow hyperpolarisation $\rightarrow \downarrow$ CNS excitability. At high doses, causes direct \uparrow Cl channel in the absence of GABA.	
Clinical Use	Induction and maintenance of anaesthesia Sedation	
Dose	1-2mg/kg IV	
CNS	 EEG – can cause epileptiform waves and cause seizures in susceptible individuals (different from thio) ↓CMO₂, ↓ CBF, ↓ ICP 30% have excitatory responses – cough, hiccups, twitch, hypertonia 	
CVS – produce NO, ↓ SNS output	↓ SV ↓ CO 20% ↓ SVR ↓ MAP Preserves BR reflex → ↑ HR ↓ O ₂ consumption	
Resp	↓RR, \uparrow TV → overall ↓ MV ↓ response to hypercapnoea, hypoxia Can cause cough, bronchospasm	
GI	N+V	

Local	Pain 80% injection
	Intra-arterial – thrombus < thiopentone
	Extravasation – mild necrosis < thiopentone
Uterine	Nil effect
Allergy	Mild
Specific toxicity	Triggers porphyria is susceptible individuals (个D-ALA synthetise)

Property	Midazolam
	zobenzodiazepine used commonly in anaesthesia for sedation, hypnosis, anxiolysis and
anti-emesis.	
Structure	$H_{3}C + H_{3}C + H$
Group	Imidazobenzodiazepine
Presentation	1/2/5mg/mL (0.1/0.2/0.5% solution)
pH	3.5
рн рКа	6.5, with 89% unionised at pH 7.4
Clinical dose:	IV/IM: 0.02-0.2mg/kg Infusion: 0.02-0.2 mg/kg/hour Effect 10min, lasts 20-60min IT: 0.3-2mg Epidural: 0.1-0.2mg
Pharmacokinetic	
Absorption	F = 40%, extensive first pass metabolism
Distribution: VD Protein binding Onset / offset	1-1.5 L/kg 95% protein bound Offset redistribution, then metabolism
Metabolism: Liver Metabolites	Hydroxylation by CYP 3A4 \rightarrow active metabolites Glucoronidation \rightarrow inactive metabolites
Excretion: Kidney Clearance T _{1/2}	Excreted kidney 7mL/kg/min (10x diazepam) 1-4 hours
Pharmacodynamics	
Mechanism action	Binds to α -unit of GABA receptor (ligand gated Cl channel) \rightarrow facilitates binding of GABA $\rightarrow \uparrow$ frequency of opening of Cl channel \rightarrow cell hyperpolarisation \rightarrow CNS inhibition
Clinical use:	Induction, sedation, anxiolysis, behavioural disturbance, seizures.
CNS: EEG	Sedation, anxiolysis, anterograde amnesia, hypnosis. Ceiling effect of CNS depression, so can't produce general anaesthesia on its own. Dose dependent $\alpha \rightarrow \theta \rightarrow \gamma \rightarrow$ burst suppression. No isoelectric.
CMO2 CBF/ICP	\downarrow
CVS: SV SVR	No change \downarrow
CO MAP HR	Maintained ↓ 5% ↑

CMO ₂	No change
Autoregulation	Obtunded response to intubation
Resp:	
MV	\uparrow RR, \downarrow TV, overall no change MV
Airway reflexes	Reduces at high doses
Response CO ₂ /O ₂	Mildly \downarrow response, additive with other resp depressants
GI	Antiemetic
Antagonist	Flumazenil
Drug interactions	Metabolised by CYP3A4, same as alfentanyl $ ightarrow$ prolonged action
	MAC sparring with inhalational
	Blunts response to instrumentation with fentanyl

Pharm-02A16 Briefly outline the pharmacology of flumazenil.

Flumazenil is an important benzodiazepine antagonist. It is used in anaesthesia in the reversal of benzodiazepine overdose.

Both drugs act at the GABA_A receptor site. This receptor is a ligand-gated Cl channel which has 5 subunits - 2α , 2β and γ . The benzodiazepines binds to a specific α receptor, which facilitates GABA binding to the β receptor and \uparrow Cl- channel opening frequency \rightarrow cell hyperpolarisation.

Property	Flumazenil
Pharmaceutical	
Group	Imidazodiazepine
Presentation	Crystalline powder in solution
	0.5mg/5mL (0.01% solution)
рКа	1.7
Doses	IV - 0.2 mg bolus, up to 1mg
	Infusion – 0.1mcg/kg/min
Pharmacokinetic	
Absorption	Well absorbed but high 1 st pass, F = 25%
Distribution	VD = 1L/kg
	Protein binding 50%
Metabolism	Rapid hepatic metabolism by glucoronidation
	Inactive metabolites
Elimination	Renal excretion
	CL = 20mL.kg/min
	$T_{1/2\beta} = 1 \text{ hour}$
Pharmacodynamic	
Mechanism action	Competitive antagonist at the benzodiazepine receptor on the GABA α -subunit.
Clinical uses	Benzodiazepine overdose – respiratory depression, unconsciousness, sedation,
	amnesia.
Side effects	Short duration of action as $T_{1/2}$ is generally less than benzodiazepines which it is
	reversing. Requires repeated administration.
	Can precipitate benzodiazepine withdrawal.